Structure of microemulsion-ABA triblock copolymer networks.

نویسندگان

  • J M G Sarraguça
  • A A C C Pais
  • Per Linse
چکیده

Structural equilibrium properties of transient networks formed by microemulsion droplets and ABA triblock copolymers in solution have been studied by Monte Carlo simulation. The droplets were represented by soft spheres, and the polymers were represented by junctions connected by harmonic bonds with an angular potential regulating the intrinsic chain stiffness. The interaction parameters were selected such that the end A-blocks were localized inside the droplets and the middle B-block in the continuous phase. The influence of (i) the polymer concentration, (ii) the polymer stiffness, and (iii) the contour length of the middle B-block on the formation and the structure of the microemulsion-polymer network were investigated using polymer end-to-end separation probability distribution functions, droplet radial distribution functions, droplet-droplet nearest-neighbor probability distribution functions, and network connectivity indicators. An increase of the polymer-droplet number ratio had a strong impact on the network formation. Under typical conditions and at an intermediate polymer-droplet number ratio, (i) the fraction of polymers forming bridges between droplets increased from essentially zero to unity and (ii) the fraction of polymers that were forming loops decreased as the ratio of the polymer end-to-end separation and the surface-to-surface separation between neighboring droplets for a hypothetical homogeneous droplet distribution was increased from 0.5 to 2. For long and flexible polymers, a mesoscopic segregation triggered by a depletion attraction between droplets appeared, and, furthermore, for sufficiently stiff chains, only bridge conformations occurred. The percolation probability could be represented as a function of the average droplet cluster size only, across all systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of c...

متن کامل

Giant tubular and toroidal vesicles from self-assembled triblock copolymer-polyaniline complexes in water.

An ABA type amphiphilic triblock copolymer was synthesized via ATRP and sulfonation. New self-assembled morphologies such as toroidal vesicles, giant tubular vesicles, and perforated spherical vesicles were observed from triblock copolymer-polyaniline complexes in water. The mechanism of morphology transformation at different compositions was discussed.

متن کامل

Self-assembly in block polyelectrolytes.

The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (A...

متن کامل

Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory.

The overall goal of this study was to synthesize semicrystalline poly(ε-caprolactone) (PCL) copolymer networks with stimuli-responsive shape memory behavior. Herein, we investigate the influence of a cinnamoyl moiety to design shape memory polymer networks with tunable transition temperatures. The effect of various copolymer architectures (random or ABA triblock), the molecular weight of the cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 24 19  شماره 

صفحات  -

تاریخ انتشار 2008